Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 324(3): H330-H337, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607795

RESUMO

Despite data showing that estrogen is vasculoprotective in large conduit arteries, hormone therapy (HT) during menopause has not proven to mitigate cardiovascular disease (CVD) risk. Estrogen exposure through prolonged oral contraceptive use and gender-affirming therapy can also increase cis- and trans-females' risk for future CVD, respectively. The microvasculature is a unique vascular bed that when dysfunctional can independently predict future adverse cardiac events; however, studies on the influence of estrogen on human microvessels are limited. Here, we show that isolated human arterioles from females across the life span maintain nitric oxide (NO)-mediated dilation to flow, whereas chronic (16-20 h) exposure to exogenous (100 nM) 17ß-estradiol promotes microvascular endothelial dysfunction in vessels from adult females of <40 and ≥40 yr of age. The damaging effect of estrogen was more dramatic in arterioles from biological males, as they exhibited both endothelial and smooth muscle dysfunction. Furthermore, females of <40 yr have greater endothelial expression of estrogen receptor-ß (ER-ß) and G protein-coupled estrogen receptor (GPER) compared with females of ≥40 yr and males. Estrogen receptor-α (ER-α), the prominent receptor associated with protective effects of estrogen, was identified within the adventitia as opposed to the endothelium across all groups. To our knowledge, this is the first study to report the detrimental effects of estrogen on the human microvasculature and highlights differences in estrogen receptor expression.NEW & NOTEWORTHY Microvascular dysfunction is an independent predictor of adverse cardiac events; however, the effect of estrogen on the human microcirculation represents a critical knowledge gap. To our knowledge, this is the first study to report sex-specific detrimental effects of chronic estrogen on human microvascular reactivity. These findings may offer insight into the increased CVD risk associated with estrogen use in both cis- and trans-females.


Assuntos
Receptores de Estrogênio , Doenças Vasculares , Masculino , Adulto , Feminino , Humanos , Arteríolas/metabolismo , Receptores de Estrogênio/metabolismo , Vasodilatação , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Doenças Vasculares/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Endotélio Vascular/metabolismo
2.
Front Pharmacol ; 13: 875900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444544

RESUMO

Chronic administration of exogenous adiponectin restores nitric oxide (NO) as the mediator of flow-induced dilation (FID) in arterioles collected from patients with coronary artery disease (CAD). Here we hypothesize that this effect as well as NO signaling during flow during health relies on activation of Adiponectin Receptor 1 (AdipoR1). We further posit that osmotin, a plant-derived protein and AdipoR1 activator, is capable of eliciting similar effects as adiponectin. Human arterioles (80-200 µm) collected from discarded surgical adipose specimens were cannulated, pressurized, and pre-constricted with endothelin-1 (ET-1). Changes in vessel internal diameters were measured during flow using videomicroscopy. Immunofluorescence was utilized to compare expression of AdipoR1 during both health and disease. Administration of exogenous adiponectin failed to restore NO-mediated FID in CAD arterioles treated with siRNA against AdipoR1 (siAdipoR1), compared to vessels treated with negative control siRNA. Osmotin treatment of arterioles from patients with CAD resulted in a partial restoration of NO as the mediator of FID, which was inhibited in arterioles with decreased expression of AdipoR1. Together these data highlight the critical role of AdipoR1 in adiponectin-induced NO signaling during shear. Further, osmotin may serve as a potential therapy to prevent microvascular endothelial dysfunction as well as restore endothelial homeostasis in patients with cardiovascular disease.

3.
Am J Physiol Heart Circ Physiol ; 321(5): H985-H1003, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559580

RESUMO

Ventilation with gases containing enhanced fractions of oxygen is the cornerstone of therapy for patients with hypoxia and acute respiratory distress syndrome. Yet, hyperoxia treatment increases free reactive oxygen species (ROS)-induced lung injury, which is reported to disrupt autophagy/mitophagy. Altered extranuclear activity of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), plays a protective role in ROS injury and autophagy in the systemic and coronary endothelium. We investigated interactions between autophagy/mitophagy and TERT that contribute to mitochondrial dysfunction and pulmonary injury in cultured rat lung microvascular endothelial cells (RLMVECs) exposed in vitro, and rat lungs exposed in vivo to hyperoxia for 48 h. Hyperoxia-induced mitochondrial damage in rat lungs [TOMM20, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], which was paralleled by increased markers of inflammation [myeloperoxidase (MPO), IL-1ß, TLR9], impaired autophagy signaling (Beclin-1, LC3B-II/1, and p62), and decreased the expression of TERT. Mitochondrial-specific autophagy (mitophagy) was not altered, as hyperoxia increased expression of Pink1 but not Parkin. Hyperoxia-induced mitochondrial damage (TOMM20) was more pronounced in rats that lack the catalytic subunit of TERT and resulted in a reduction in cellular proliferation rather than cell death in RLMVECs. Activation of TERT or autophagy individually offset mitochondrial damage (MTT). Combined activation/inhibition failed to alleviate hyperoxic-induced mitochondrial damage in vitro, whereas activation of autophagy in vivo decreased mitochondrial damage (MTT) in both wild type (WT) and rats lacking TERT. Functionally, activation of either TERT or autophagy preserved transendothelial membrane resistance. Altogether, these observations show that activation of autophagy/mitophagy and/or TERT mitigate loss of mitochondrial function and barrier integrity in hyperoxia.NEW & NOTEWORTHY In cultured pulmonary artery endothelial cells and in lungs exposed in vivo to hyperoxia, autophagy is activated, but clearance of autophagosomes is impaired in a manner that suggests cross talk between TERT and autophagy. Stimulation of autophagy prevents hyperoxia-induced decreases in mitochondrial metabolism and sustains monolayer resistance. Hyperoxia increases mitochondrial outer membrane (TOMM20) protein, decreases mitochondrial function, and reduces cellular proliferation without increasing cell death.


Assuntos
Células Endoteliais/enzimologia , Hiperóxia/complicações , Lesão Pulmonar/enzimologia , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Mitocôndrias/enzimologia , Mitofagia , Telomerase/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Permeabilidade Capilar , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Técnicas de Inativação de Genes , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Microvasos/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Superfície Celular/metabolismo , Telomerase/deficiência , Telomerase/genética , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
4.
Bioscience ; 67(7): 638-645, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599541

RESUMO

Broadening the participation of women in science, technology, engineering, and mathematical (STEM) fields is more than a social-justice issue; diversity is paramount to a thriving national research agenda. However, women face several obstacles to fully actualizing their research potential. Enhancing the research capacity and opportunity of women faculty requires purposeful changes in university practice. Therefore, we designed an intervention, a grant-writing bootcamp informed by self-determination theory (Deci and Ryan 2012), to support the participants' feelings of relatedness, autonomy, and competence. Three grant-writing bootcamps were run over an 18-month period. Using a pre- and post-test design over the span of 1 year (and contrasting results with a comparison sample who were not part of the intervention) showed that the women participating in the grant-writing bootcamp significantly increased the number of external grants submitted, the number of proposals led as principal investigator, the number of external grants awarded, and the amount of external funding dollars awarded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...